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I.  Abstract: 
Documents automatically classification or 

text classification is of increasing interesting and 
applications. Examples of text classification 
applications are spam filter, knowledge 
management and retrieval, document in specific 
topics query, language guessing. This project is 
going to examine text classification machine 
learning methods and implement one of the 
methods, the Naïve Bayes method over twenty 
newsgroup categories. The Naïve Bayes method 
incorporating with TF-IDF methods are 
implemented to improve performance. 

II.  Introduction: 
Text classification is to categorize 

electronic documents into appropriate classes. In 
another words, text classification is to assign 
each electronic document with an appropriate 
label. The task of text classification is divided 
into two kinds: supervised classification and 
unsupervised classification. Supervised 
classification uses some external mechanism 
such as human to support the task while 
unsupervised classification does not. 

Text classification has many useful 
applications such as spam filter, knowledge 
management and retrieval, document in specific 
topics query, language guessing, topic spotting, 
email routing, webpage type classification, 
product review classification task… Spam filter 
is to determine whether an incoming email a 
spam mail, junk mail or a normal mail, or even a 
priority mail. Topic spotting is to determine 
topic of a text, while email routing is to forward 
an incoming email from general email address to 
specific email address based on content of 
received email. 

Methods of text classification have been 
developed from time to time and become more 
and more powerful and accurate. Such methods 
are Naive Bayes classifier, Tf-idf, latent 
semantic indexing, support vector machines 
(SVM), artificial neural network, kNN, decision 
trees such as ID3 or C4.5, concept mining, 
Rough set based classifier, soft set based 
classifier… Every method has its own 
characteristic, has its own pros and cons. These 
methods can be used together so that they can 
complement each other. E.g., in this topic, Naïve 
Bayes and TF-IDF have been implemented to 

degrade their cons and improve the classification 
task performance. 

In this project, a text classifier has been 
implemented from scratch based on Naïve Bayes 
algorithm and using TF-IDF as complement 
method to improve performance. Microsoft 
Visual C# 2008 has been used as programming 
environment and Microsoft .Net Framework 3.5 
has been used to provide program user interface. 

III.  Basic text classification methods 
Solutions for text classification problem 

can be human-engineered rule-base system or 
machine learning system. The former is easier to 
be implemented and more accuracy with small 
amount of data. There are several human-
engineered rule-base systems such as 
CONSTRUE system which have precision of 
over 90% on 750 test cases [Hayes and 
Weinstein, 1991]. This is a good result, 
however, not sufficient for real world 
classification task. Therefore, we need machine 
learning system. An example of a machine 
learning system for the same task is a system 
based on Memory Based Reasoning [Masand et 
al., 1992], which employs nearest neighbor style 
classification and has a reported accuracy in the 
range of 70-80% on Dow Jones news stories. 

For machine learning system, there are 
several solutions mentioned in introduction part. 
Here Decision tree and Naïve Bayes are 
provided as example text classification methods. 
Text classification is just such a domain with 
attributes are words, where number of attributes 
are large. More sophisticated model will take 
into account word pairs or words phrases. 

Figure 1-Machine learning approach for text classification 
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With Naïve Bayes model, the “Naïve Bayes 
assumption” is used such that all attributes of 
examples are independent of each other given 
the context of class. This makes the model easier 
to be implemented but does not much degrade 
the accurate rate. With decision tree model, a 
universe dictionary or local dictionary will be 
created by scanning the whole documents for 
words that appear over five times.. The top n 
(n<10000) frequent items in the dictionary will 
be chosen for finding patterns for specific topic. 
An induction rule such as Swap-1 [Chidanand 
Apte,1994] will be used for finding the patterns. 
The final step for decision tree is evaluating for 
choosing the best solution based on minimum 
classification error and cost.  

There are two different classifiers but have 
the same name “Naïve Bayes” that both use the 
“Naïve Bayes assumption”. One of them is 
called “Multi-variate Bernoulli Model” and the 
other one is called “Multi nominal event model”. 
The former one is suitable for tasks that have 
fixed numbers of attributes. In this case, the 
documents can be considered as events while 
absence and presence of words are attributes of 
events. In case of the later one, the word 
occurrences are events while the document is the 
collection of word event. The “Multinomial 
event model” takes into account number of times 
each word occurrence in the document but the 
Multi-variate Bernoulli Model does not. 

IV.  Implementation 
There are two main phases in text 

classifications. That are training phase and 
testing phase. In former phase, Naïve Bayes in 
cooperating with TF-IDF will be used to build 
the text classification model. The later phase 
will involve in using Naive Bayes for applying 
text classification task.  

The most important attributes of text 
classification model are words and probability of 
words in documents and in category that the 
documents belong to. Therefore, important 
words from collection of documents need to be 
extracted first to build up the model. Important 
word extraction is solved by following steps: 
tokenizing, removing stop words, stemming and 
getting top most important words by applying 
TF-IDF weighting factor. 

Each document in each category of training 
dataset will be read sequentially and tokenized 

into many terms using following regular 
expression: [^a-zA-Z]. Each term will then be 
removed if they are in stop word list. Stop words 
not only appear a lot compare to other words in 
a document but also appear in almost every 
document. Therefore, stop words are 
unimportant; they cannot help to distinguish 
contents between documents. The list of 450 
stop words has been use in this project.  

Stemming is process of remove a word 
prefix, suffix, and turn it to original or turn a set 

of words that have same original to same stem 
(this stem is not required to be root word or to be 

Figure 2 - Stop words list 

Figure 3 - Category "alt.atheism" after tokenized 
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meaningful). For example, set of words: 
“learning”, “learnt”, “learned” should be 
stemmed to “learn” only. Purpose of stemming 
is to reduce the numbers of terms in our model 
so that performance will be enhanced. Figure 3 
and figure 4 show the different between set of 
tokenized words and set of words after removing 
stop words and stemming. These words are 
extracted from the category “alt.atheism” in the 
training dataset. 

In order to enhance more performance, the 
list of tokens/ words in the model can be reduced 
by either using threshold method or TF-IDF 
method. The former one is much easier than the 
later one. In the former one, what we need to do 
is just to specify an upper and a lower threshold 
value so that every word that appear more than 
upper threshold or less than lower threshold 
value will be removed. The recommend upper 
threshold should be 100 and lower threshold 
should be 10, in my opinion. The reason that 
makes threshold work is that unimportant words 
that not appear quite often or appear a lot in 
almost documents over the whole document 
collection should be removed.  

TF-IDF method is more complicated but can 
help removing a lot of unimportant words with 
confident. In TF-IDF method, we define weight 
of term is (TF*IDF) where TF refers to Term 

Frequency and IDF refers to Inverse Document 
Frequency. Weight is a measure of how 
important a word is to a document in a 
collection. TF tells us how often the word 
appears in a document compare to other words. 
In the other hand, DF (document frequency) 
shows us how many documents in a collection 
contain the word. IDF is inverted of DF; this 
means the higher DF, the smaller IDF. 
Consequently, the higher TF is as well as the 
higher IDF is, the more important the word is. In 
other words, the higher weight of term 
(TF*IDF), the more important the term is. TF 
and IDF formula is given as following: 

���,� �
��,�

�	�	,�
 


 ��� � log
|�|

|��: �� ∈ ��|
 

Where ��,�  is count of word ��  in the 
document	��. |D| is total number of documents in 
the collection. |��: �� ∈ ��|  is number of 
documents that contain word �� . In order to 
avoid division by zero, 1 �	|��: �� ∈ ��| should 
be used instead of	|��: �� ∈ ��|. 

Based on weight (TF*IDF), top 1000, 5000, 
10000… words with top weight can be chosen 
for text classification model confidentially. The 
number of top weighted words is chosen 
depending on purpose of classification task 
whether correctness or speed is higher priority. 
The lower number of chosen words, the faster 
classification task will be.  

After tokenizing, removing stop words, 
stemming and getting top most important words 
by applying TF-IDF weighting factor, it is time 
to calculate parameters for our model. Naïve 
Bayes is key algorithm for this task. Considering 
our model now contains following information: 

• D: Set of documents 
• N: number of documents in D 
• V:  Set of vocabulary/tokens/terms 
• C: set of Categories 

Besides of these parameters, in order to 
complete our model, we need 2 more parameters 
that are prior and condprob. prior and conprob 
are calculated by steps shown below. prior tells 
us how many documents in a category compared 
to other categories in the collection. condprob 
shows us how important a word compared to 
other words in specific category. 

Figure 4 - Category "alt.atheism" after stop words 
removal and stemming 
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• Foreach category c in C 
Nc   = Number of documents in c 
Prior = Nc/N  
textc

 = All text in category c 
foreach t in V 
 do Tct= countTokens(t,textc) 
foreach t in V 

����������, �� � 	
��� � 1

��′(���" � 1)
 

• return  V,prior, condprob 
 
Now, our text classification model is 

completed and can be applied to classification 
task. Let d is document to be classified and W is 
extracted tokens/words form (V,d). Result 
returned from below function is category of 
document d.  

 
• Foreach c in C 

score[c] = log(prior[c]) 
foreach t in W 
score[c]+= log(condprob[t,c]) 

return argmaxc in C(score[c]) 
 
Finally, a classifier has been completely 

implemented throughout this section. From 
training data, the classifier is able to build up a 
model and apply that model for classification 
task. Another quick note is this classifier using 
multi-nomial Naïve Bayes algorithm. 

V. Testing and results 
In this section, the classifier implemented in 

previous section will do training task and testing 
task over several datasets. All of the datasets 
contain following twenty categories: 

comp.graphics 
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware 
comp.sys.mac.hardware 
comp.windows.x 

rec.autos 
rec.motorcycles 
rec.sport.baseball 
rec.sport.hockey 

talk.politics.misc 
talk.politics.guns 
talk.politics.mideast 

misc.forsale 

talk.religion.misc 
alt.atheism 
soc.religion.christian 

sci.crypt 
sci.electronics 
sci.med 
sci.space 

The first dataset using for both training task 
and testing task contains 19997 articles. Without 

TF-IDF, total 95432 terms were found from this 
dataset. After TF-IDF, total terms were reduced 
to 7681, 4780, 1343 terms with 89.62%, 
88.82%, 88.29% correctness alternatively. 
Details about classification correctness of each 
category can be found in figure 5, 6, 7.  

The second dataset is a little bit different 
from previous one. This dataset is revised 
version of original dataset (19997 documents). 
The documents are sorted by date and divided 
into training (60%) and test (40%) sets. Cross-
posts (duplicates) and newsgroup-identifying 
headers are removed. Training set is described 
as following: 
Total documents 11314 
alt.atheism  480 
comp.graphics  584 
comp.os.ms-windows.misc  591 
comp.sys.ibm.pc.hardware  590 
comp.sys.mac.hardware  578 
comp.windows.x  593 
misc.forsale  585 
rec.autos  594 
rec.motorcycles  598 
rec.sport.baseball  597 
rec.sport.hockey  600 
sci.crypt  595 
sci.electronics  591 
sci.med  594 
sci.space  593 
soc.religion.christian  599 
talk.politics.guns  546 
talk.politics.mideast  564 
talk.politics.misc  465 
talk.religion.misc  377 

Without TF-IDF, total 69604 terms were 
found from this dataset. After TF-IDF, total 
terms were reduced to 8291, 5017, 1380 terms 
with 78.44%, 77.28%, 72.69% correctness 
alternatively. Details can be found in figure 8, 9, 
10.  

Threshold method was also examined 
instead of TF-IDF in removing unimportant 
words. If lower threshold is equal to ten, no 
upper threshold is used, total terms remained 
will be 12881, and correctness is 74.49%. If 
upper threshold equal to 100 is added, 9860 
terms will remain and the correctness achieved 
is 71.52%. 
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 Figure 5 – Applying full twenty newsgroups dataset for both training and testing - 7681 terms used after TF-IDF  

Figure 6 – Applying full twenty newsgroups dataset for both training and testing - 4780 terms used after TF-IDF 

Figure 7 - Applying full twenty newsgroups dataset for both training and testing - 1343 terms used after TF-IDF 
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 Figure 8- Applying revised twenty newsgroups dataset - 8291 terms after TF-IDF 

Figure 9 - Applying revised twenty newsgroups dataset - 5017 terms after TF-IDF 

Figure 10 - Applying revised twenty newsgroups dataset - 1380 terms after TF-IDF 
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VI.  Discussion: 
Naïve Bayes methods for text classification 

is simple to implement compared to other 
algorithms. It has low variance and high bias. 
Naïve Bayes categorization is a simple 
probabilistic categorization based on 
Conditional Independence between features. 
Naïve Bayes classifies an unknown instance by 
computing the category which maximizes the 
posterior.  

In cooperating with TF-IDF weighting, 
Naïve Bayes classification performance is 
improved incredibly. Only with less than 1400 
terms left out of nearly 100000 terms in full 
twenty newsgroup dataset or out of nearly 70000 
terms in the revised dataset was enough to 
achieve high correctness. Compared to threshold 
method to drop unimportant terms, TF-IDF is 
more efficient and precise. Moreover, if the stop 
words list was not used, those stop words should 
also be removed after TF-IDF.  

Using same dataset for both training and 
testing purpose can result in really high 
correctness (almost 90% correctness in overall). 
Some category such as “soc.religion.christian” 
can even reaches 99.90% correctness. If training 
dataset and testing data set are separated, the 
result is not as good as in previous case. 
However, over 77% is still reliable result. 

Despite of very excellent performance on 
independent categories such as 
“soc.religion.christian”, “misc.forsale”…, the 
“comp.os.ms-windows.misc” always gets worst 
performance. This proves that the assumption of 
Conditional Independence is violated by the real 
world data and Naïve Bayes has poor 
performance when the features are highly 
correlated, e.g. “comp.os.ms-windows.misc” is 
high correlated with “comp.windows.x” as well 
as other categories in “comp” parent category. 

VII.  Conclusion 
Throughout this project, several text 

classification methods have been examined. A 
Naïve Bayes classifier in corporation with TF-
IDF has been implemented and tested. High 
performance was shown by applying the twenty 
newsgroups dataset in several different ways. 
Despite of some strong points that Naïve Bayes 
and TF-IDF enhanced, there was still some 
weakness in classification high correlated 
dataset. These weaknesses should be overcome 

by other advanced classification methods. Future 
work of this project would be implementing 
more different classifier and comparing their 
performance as well as optimizing current 
classifier. 
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