
Hung Vo H.M Text classification using Machine Learning

CP-SC 881 1

Text classification using Machine Learning
CP-SC 881 Machine Learning

Hung VO H.M
Instructor: Professor Luo Feng

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 2

I. Abstract:
Documents automatically classification or

text classification is of increasing interesting and
applications. Examples of text classification
applications are spam filter, knowledge
management and retrieval, document in specific
topics query, language guessing. This project is
going to examine text classification machine
learning methods and implement one of the
methods, the Naïve Bayes method over twenty
newsgroup categories. The Naïve Bayes method
incorporating with TF-IDF methods are
implemented to improve performance.

II. Introduction:
Text classification is to categorize

electronic documents into appropriate classes. In
another words, text classification is to assign
each electronic document with an appropriate
label. The task of text classification is divided
into two kinds: supervised classification and
unsupervised classification. Supervised
classification uses some external mechanism
such as human to support the task while
unsupervised classification does not.

Text classification has many useful
applications such as spam filter, knowledge
management and retrieval, document in specific
topics query, language guessing, topic spotting,
email routing, webpage type classification,
product review classification task… Spam filter
is to determine whether an incoming email a
spam mail, junk mail or a normal mail, or even a
priority mail. Topic spotting is to determine
topic of a text, while email routing is to forward
an incoming email from general email address to
specific email address based on content of
received email.

Methods of text classification have been
developed from time to time and become more
and more powerful and accurate. Such methods
are Naive Bayes classifier, Tf-idf, latent
semantic indexing, support vector machines
(SVM), artificial neural network, kNN, decision
trees such as ID3 or C4.5, concept mining,
Rough set based classifier, soft set based
classifier… Every method has its own
characteristic, has its own pros and cons. These
methods can be used together so that they can
complement each other. E.g., in this topic, Naïve
Bayes and TF-IDF have been implemented to

degrade their cons and improve the classification
task performance.

In this project, a text classifier has been
implemented from scratch based on Naïve Bayes
algorithm and using TF-IDF as complement
method to improve performance. Microsoft
Visual C# 2008 has been used as programming
environment and Microsoft .Net Framework 3.5
has been used to provide program user interface.

III. Basic text classification methods
Solutions for text classification problem

can be human-engineered rule-base system or
machine learning system. The former is easier to
be implemented and more accuracy with small
amount of data. There are several human-
engineered rule-base systems such as
CONSTRUE system which have precision of
over 90% on 750 test cases [Hayes and
Weinstein, 1991]. This is a good result,
however, not sufficient for real world
classification task. Therefore, we need machine
learning system. An example of a machine
learning system for the same task is a system
based on Memory Based Reasoning [Masand et
al., 1992], which employs nearest neighbor style
classification and has a reported accuracy in the
range of 70-80% on Dow Jones news stories.

For machine learning system, there are
several solutions mentioned in introduction part.
Here Decision tree and Naïve Bayes are
provided as example text classification methods.
Text classification is just such a domain with
attributes are words, where number of attributes
are large. More sophisticated model will take
into account word pairs or words phrases.

Figure 1-Machine learning approach for text classification

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 3

With Naïve Bayes model, the “Naïve Bayes
assumption” is used such that all attributes of
examples are independent of each other given
the context of class. This makes the model easier
to be implemented but does not much degrade
the accurate rate. With decision tree model, a
universe dictionary or local dictionary will be
created by scanning the whole documents for
words that appear over five times.. The top n
(n<10000) frequent items in the dictionary will
be chosen for finding patterns for specific topic.
An induction rule such as Swap-1 [Chidanand
Apte,1994] will be used for finding the patterns.
The final step for decision tree is evaluating for
choosing the best solution based on minimum
classification error and cost.

There are two different classifiers but have
the same name “Naïve Bayes” that both use the
“Naïve Bayes assumption”. One of them is
called “Multi-variate Bernoulli Model” and the
other one is called “Multi nominal event model”.
The former one is suitable for tasks that have
fixed numbers of attributes. In this case, the
documents can be considered as events while
absence and presence of words are attributes of
events. In case of the later one, the word
occurrences are events while the document is the
collection of word event. The “Multinomial
event model” takes into account number of times
each word occurrence in the document but the
Multi-variate Bernoulli Model does not.

IV. Implementation
There are two main phases in text

classifications. That are training phase and
testing phase. In former phase, Naïve Bayes in
cooperating with TF-IDF will be used to build
the text classification model. The later phase
will involve in using Naive Bayes for applying
text classification task.

The most important attributes of text
classification model are words and probability of
words in documents and in category that the
documents belong to. Therefore, important
words from collection of documents need to be
extracted first to build up the model. Important
word extraction is solved by following steps:
tokenizing, removing stop words, stemming and
getting top most important words by applying
TF-IDF weighting factor.

Each document in each category of training
dataset will be read sequentially and tokenized

into many terms using following regular
expression: [^a-zA-Z]. Each term will then be
removed if they are in stop word list. Stop words
not only appear a lot compare to other words in
a document but also appear in almost every
document. Therefore, stop words are
unimportant; they cannot help to distinguish
contents between documents. The list of 450
stop words has been use in this project.

Stemming is process of remove a word
prefix, suffix, and turn it to original or turn a set

of words that have same original to same stem
(this stem is not required to be root word or to be

Figure 2 - Stop words list

Figure 3 - Category "alt.atheism" after tokenized

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 4

meaningful). For example, set of words:
“learning”, “learnt”, “learned” should be
stemmed to “learn” only. Purpose of stemming
is to reduce the numbers of terms in our model
so that performance will be enhanced. Figure 3
and figure 4 show the different between set of
tokenized words and set of words after removing
stop words and stemming. These words are
extracted from the category “alt.atheism” in the
training dataset.

In order to enhance more performance, the
list of tokens/ words in the model can be reduced
by either using threshold method or TF-IDF
method. The former one is much easier than the
later one. In the former one, what we need to do
is just to specify an upper and a lower threshold
value so that every word that appear more than
upper threshold or less than lower threshold
value will be removed. The recommend upper
threshold should be 100 and lower threshold
should be 10, in my opinion. The reason that
makes threshold work is that unimportant words
that not appear quite often or appear a lot in
almost documents over the whole document
collection should be removed.

TF-IDF method is more complicated but can
help removing a lot of unimportant words with
confident. In TF-IDF method, we define weight
of term is (TF*IDF) where TF refers to Term

Frequency and IDF refers to Inverse Document
Frequency. Weight is a measure of how
important a word is to a document in a
collection. TF tells us how often the word
appears in a document compare to other words.
In the other hand, DF (document frequency)
shows us how many documents in a collection
contain the word. IDF is inverted of DF; this
means the higher DF, the smaller IDF.
Consequently, the higher TF is as well as the
higher IDF is, the more important the word is. In
other words, the higher weight of term
(TF*IDF), the more important the term is. TF
and IDF formula is given as following:

���,� �
��,�

�	�	,�

 ��� � log
|�|

|��: �� ∈ ��|

Where ��,� is count of word �� in the
document	��. |D| is total number of documents in
the collection. |��: �� ∈ ��| is number of
documents that contain word �� . In order to
avoid division by zero, 1 �	|��: �� ∈ ��| should
be used instead of	|��: �� ∈ ��|.

Based on weight (TF*IDF), top 1000, 5000,
10000… words with top weight can be chosen
for text classification model confidentially. The
number of top weighted words is chosen
depending on purpose of classification task
whether correctness or speed is higher priority.
The lower number of chosen words, the faster
classification task will be.

After tokenizing, removing stop words,
stemming and getting top most important words
by applying TF-IDF weighting factor, it is time
to calculate parameters for our model. Naïve
Bayes is key algorithm for this task. Considering
our model now contains following information:

• D: Set of documents
• N: number of documents in D
• V: Set of vocabulary/tokens/terms
• C: set of Categories

Besides of these parameters, in order to
complete our model, we need 2 more parameters
that are prior and condprob. prior and conprob
are calculated by steps shown below. prior tells
us how many documents in a category compared
to other categories in the collection. condprob
shows us how important a word compared to
other words in specific category.

Figure 4 - Category "alt.atheism" after stop words
removal and stemming

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 5

• Foreach category c in C
Nc = Number of documents in c
Prior = Nc/N
textc

 = All text in category c
foreach t in V
 do Tct= countTokens(t,textc)
foreach t in V

����������, �� � 	
��� � 1

��′(���" � 1)

• return V,prior, condprob

Now, our text classification model is

completed and can be applied to classification
task. Let d is document to be classified and W is
extracted tokens/words form (V,d). Result
returned from below function is category of
document d.

• Foreach c in C

score[c] = log(prior[c])
foreach t in W
score[c]+= log(condprob[t,c])

return argmaxc in C(score[c])

Finally, a classifier has been completely

implemented throughout this section. From
training data, the classifier is able to build up a
model and apply that model for classification
task. Another quick note is this classifier using
multi-nomial Naïve Bayes algorithm.

V. Testing and results
In this section, the classifier implemented in

previous section will do training task and testing
task over several datasets. All of the datasets
contain following twenty categories:

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

talk.politics.misc
talk.politics.guns
talk.politics.mideast

misc.forsale

talk.religion.misc
alt.atheism
soc.religion.christian

sci.crypt
sci.electronics
sci.med
sci.space

The first dataset using for both training task
and testing task contains 19997 articles. Without

TF-IDF, total 95432 terms were found from this
dataset. After TF-IDF, total terms were reduced
to 7681, 4780, 1343 terms with 89.62%,
88.82%, 88.29% correctness alternatively.
Details about classification correctness of each
category can be found in figure 5, 6, 7.

The second dataset is a little bit different
from previous one. This dataset is revised
version of original dataset (19997 documents).
The documents are sorted by date and divided
into training (60%) and test (40%) sets. Cross-
posts (duplicates) and newsgroup-identifying
headers are removed. Training set is described
as following:
Total documents 11314
alt.atheism 480
comp.graphics 584
comp.os.ms-windows.misc 591
comp.sys.ibm.pc.hardware 590
comp.sys.mac.hardware 578
comp.windows.x 593
misc.forsale 585
rec.autos 594
rec.motorcycles 598
rec.sport.baseball 597
rec.sport.hockey 600
sci.crypt 595
sci.electronics 591
sci.med 594
sci.space 593
soc.religion.christian 599
talk.politics.guns 546
talk.politics.mideast 564
talk.politics.misc 465
talk.religion.misc 377

Without TF-IDF, total 69604 terms were
found from this dataset. After TF-IDF, total
terms were reduced to 8291, 5017, 1380 terms
with 78.44%, 77.28%, 72.69% correctness
alternatively. Details can be found in figure 8, 9,
10.

Threshold method was also examined
instead of TF-IDF in removing unimportant
words. If lower threshold is equal to ten, no
upper threshold is used, total terms remained
will be 12881, and correctness is 74.49%. If
upper threshold equal to 100 is added, 9860
terms will remain and the correctness achieved
is 71.52%.

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 6

 Figure 5 – Applying full twenty newsgroups dataset for both training and testing - 7681 terms used after TF-IDF

Figure 6 – Applying full twenty newsgroups dataset for both training and testing - 4780 terms used after TF-IDF

Figure 7 - Applying full twenty newsgroups dataset for both training and testing - 1343 terms used after TF-IDF

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 7

 Figure 8- Applying revised twenty newsgroups dataset - 8291 terms after TF-IDF

Figure 9 - Applying revised twenty newsgroups dataset - 5017 terms after TF-IDF

Figure 10 - Applying revised twenty newsgroups dataset - 1380 terms after TF-IDF

Hung Vo H.M Text classification using Machine Learning

CP-SC 881 8

VI. Discussion:
Naïve Bayes methods for text classification

is simple to implement compared to other
algorithms. It has low variance and high bias.
Naïve Bayes categorization is a simple
probabilistic categorization based on
Conditional Independence between features.
Naïve Bayes classifies an unknown instance by
computing the category which maximizes the
posterior.

In cooperating with TF-IDF weighting,
Naïve Bayes classification performance is
improved incredibly. Only with less than 1400
terms left out of nearly 100000 terms in full
twenty newsgroup dataset or out of nearly 70000
terms in the revised dataset was enough to
achieve high correctness. Compared to threshold
method to drop unimportant terms, TF-IDF is
more efficient and precise. Moreover, if the stop
words list was not used, those stop words should
also be removed after TF-IDF.

Using same dataset for both training and
testing purpose can result in really high
correctness (almost 90% correctness in overall).
Some category such as “soc.religion.christian”
can even reaches 99.90% correctness. If training
dataset and testing data set are separated, the
result is not as good as in previous case.
However, over 77% is still reliable result.

Despite of very excellent performance on
independent categories such as
“soc.religion.christian”, “misc.forsale”…, the
“comp.os.ms-windows.misc” always gets worst
performance. This proves that the assumption of
Conditional Independence is violated by the real
world data and Naïve Bayes has poor
performance when the features are highly
correlated, e.g. “comp.os.ms-windows.misc” is
high correlated with “comp.windows.x” as well
as other categories in “comp” parent category.

VII. Conclusion
Throughout this project, several text

classification methods have been examined. A
Naïve Bayes classifier in corporation with TF-
IDF has been implemented and tested. High
performance was shown by applying the twenty
newsgroups dataset in several different ways.
Despite of some strong points that Naïve Bayes
and TF-IDF enhanced, there was still some
weakness in classification high correlated
dataset. These weaknesses should be overcome

by other advanced classification methods. Future
work of this project would be implementing
more different classifier and comparing their
performance as well as optimizing current
classifier.

VIII. References
[1]. Tom M. Mitchell, “Machine Learning”,

McGraw Hill, 1997.
[2]. C. Apte, F. Damerau , and S. M. Weiss ,

”Automated Learning of Decision Rules for
Text Categorization”, ACM Transactions on
Information Systems, 1994,

[3]. McCallum, A. and Nigam K. "A
Comparison of Event Models for Naive Bayes
Text Classification", AAAI/ICML-98 Workshop
on Learning for Text Categorization, 1998

[4]. Aditya Chainulu Karamcheti, “a
comparative study on text classification”, MS
thesis, University of Nevada, Las Vegas, 2010.

[5]. Twenty Newsgroups Dataset
http://people.csail.mit.edu/jrennie/20Newsgr

oups/
[6]. Stop words list
http://www.lextek.com/manuals/onix/stopw

ords1.html
[7]. Porter Stemmer Algorithm.
http://tartarus.org/~martin/PorterStemmer/
[8]. Term Frequency and Inverse Document

Frequency – Wikipedia.
http://en.wikipedia.org/wiki/Term_frequenc

y
[9]. Document classification –Wikipedia
http://en.wikipedia.org/wiki/Document_clas

sification
[10]. Naïve Bayes Text Classification.
http://nlp.stanford.edu/IR-

book/html/htmledition/naive-bayes-text-
classification-1.html

