Text classification using Machine Learning CP-SC 881 Machine Learning

Hung VO H.M Instructor: Professor Luo Feng

I. <u>Abstract:</u>

Documents automatically classification or text classification is of increasing interesting and applications. Examples of text classification applications are spam filter, knowledge management and retrieval, document in specific topics query, language guessing. This project is going to examine text classification machine learning methods and implement one of the methods, the Naïve Bayes method over twenty newsgroup categories. The Naïve Bayes method incorporating with TF-IDF methods are implemented to improve performance.

II. <u>Introduction:</u>

Text classification is to categorize electronic documents into appropriate classes. In another words, text classification is to assign each electronic document with an appropriate label. The task of text classification is divided into two kinds: supervised classification and unsupervised classification. Supervised classification uses some external mechanism such as human to support the task while unsupervised classification does not.

Text classification has many useful applications such as spam filter, knowledge management and retrieval, document in specific topics query, language guessing, topic spotting, email routing, webpage type classification, product review classification task... Spam filter is to determine whether an incoming email a spam mail, junk mail or a normal mail, or even a priority mail. Topic spotting is to determine topic of a text, while email routing is to forward an incoming email from general email address to specific email address based on content of received email.

Methods of text classification have been developed from time to time and become more and more powerful and accurate. Such methods are Naive Bayes classifier, Tf-idf, latent semantic indexing, support vector machines (SVM), artificial neural network, kNN, decision trees such as ID3 or C4.5, concept mining, Rough set based classifier, soft set based classifier... Every method has its own characteristic, has its own pros and cons. These methods can be used together so that they can complement each other. E.g., in this topic, Naïve Bayes and TF-IDF have been implemented to degrade their cons and improve the classification task performance.

In this project, a text classifier has been implemented from scratch based on Naïve Bayes algorithm and using TF-IDF as complement method to improve performance. Microsoft Visual C# 2008 has been used as programming environment and Microsoft .Net Framework 3.5 has been used to provide program user interface.

III. <u>Basic text classification methods</u>

Solutions for text classification problem can be human-engineered rule-base system or machine learning system. The former is easier to be implemented and more accuracy with small amount of data. There are several humanengineered rule-base systems such as CONSTRUE system which have precision of over 90% on 750 test cases [Hayes and Weinstein, 1991]. This is a good result, however, not sufficient for real world classification task. Therefore, we need machine learning system. An example of a machine learning system for the same task is a system based on Memory Based Reasoning [Masand et al., 1992], which employs nearest neighbor style classification and has a reported accuracy in the range of 70-80% on Dow Jones news stories.

For machine learning system, there are several solutions mentioned in introduction part. Here Decision tree and Naïve Bayes are provided as example text classification methods. Text classification is just such a domain with attributes are words, where number of attributes are large. More sophisticated model will take into account word pairs or words phrases.

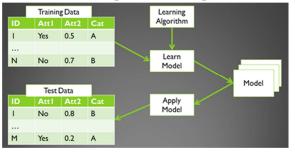


Figure 1-Machine learning approach for text classification

With Naïve Bayes model, the "Naïve Bayes assumption" is used such that all attributes of examples are independent of each other given the context of class. This makes the model easier to be implemented but does not much degrade the accurate rate. With decision tree model, a universe dictionary or local dictionary will be created by scanning the whole documents for words that appear over five times.. The top n (n<10000) frequent items in the dictionary will be chosen for finding patterns for specific topic. An induction rule such as Swap-1 [Chidanand Apte,1994] will be used for finding the patterns. The final step for decision tree is evaluating for choosing the best solution based on minimum classification error and cost.

There are two different classifiers but have the same name "Naïve Bayes" that both use the "Naïve Bayes assumption". One of them is called "Multi-variate Bernoulli Model" and the other one is called "Multi nominal event model". The former one is suitable for tasks that have fixed numbers of attributes. In this case, the documents can be considered as events while absence and presence of words are attributes of events. In case of the later one, the word occurrences are events while the document is the collection of word event. The "Multinomial event model" takes into account number of times each word occurrence in the document but the Multi-variate Bernoulli Model does not.

IV. <u>Implementation</u>

There are two main phases in text classifications. That are training phase and testing phase. In former phase, Naïve Bayes in cooperating with TF-IDF will be used to build the text classification model. The later phase will involve in using Naive Bayes for applying text classification task.

The most important attributes of text classification model are words and probability of words in documents and in category that the documents belong to. Therefore, important words from collection of documents need to be extracted first to build up the model. Important word extraction is solved by following steps: tokenizing, removing stop words, stemming and getting top most important words by applying TF-IDF weighting factor.

Each document in each category of training dataset will be read sequentially and tokenized

into many terms using following regular expression: [^a-zA-Z]. Each term will then be removed if they are in stop word list. Stop words not only appear a lot compare to other words in a document but also appear in almost every document. Therefore, stop words are unimportant; they cannot help to distinguish contents between documents. The list of 450 stop words has been use in this project.

Stemming is process of remove a word prefix, suffix, and turn it to original or turn a set

Name	Value
🖃 🔗 _stopwords	Count = 450
- 🗄 🧳 ["after"]	0.0
- 🛨 🔗 ["'twould"]	0.0
— 🛨 🧳 ["in"]	0.0
- 🛨 🧳 ["on"]	0.0
- 🗄 🧳 ["better"]	0.0
- 🛨 🤗 ["an"]	0.0
🕂 🔶 ["haven't"]	0.0
- 🛨 🔗 ["their"]	0.0
- 🛨 🔗 ["down"]	0.0
- 🛨 🔗 ["also"]	0.0
- 🛨 🔗 ["home"]	0.0
— 🛨 🧳 ["plus"]	0.0
- 🗄 🤗 ["nobody"]	0.0
- 🛨 🔗 ["everything"]	0.0
- 🗄 🤗 ["without"]	0.0
- 🛨 🔗 ["rather"]	0.0
— 🛨 🧳 ["if"]	0.0
- 🛨 🧳 ["of"]	0.0
- 🛨 🤗 ["ago"]	0.0
🕂 🕂 🔗 ["that'd"]	0.0

Figure 2 - Stop words list

Name	Value
😑 🖇 tokens	{string[274489]}
- • [0]	"freedom"
- • [1]	"from"
- 🧳 [2]	"religion"
- 🧳 [3]	"foundation"
	**
- 🧳 [5]	"darwin"
- 🧳 [6]	"fish"
- • [7]	"bumper"
- 🧳 [8]	"stickers"
- · [9]	"and"
- · [10]	"assorted"
	"other"
- · [12]	"atheist"
	"paraphernalia"
- 🧳 [14]	"are"
- 🧳 [15]	"available"
- 🧳 [16]	"from"
- · [17]	"the"
- 🧳 [18]	"freedom"
- 🧳 [19]	"from"
─ ♀ [20]	"religion"
	"foundation"
- 🧳 [22]	"in"
- 🧳 [23]	"the"
- 🧳 [24]	"us"
- 🧳 [25]	**
- 🧳 [26]	**
- 🥥 [27]	"write"
- 🧳 [28]	"to"
- 🧳 [29]	***
- 🧳 [30]	
- 🧳 [31]	"ffrf"
- · · [32]	**
- · [33]	"p"
- 🧳 [34]	"o"
- 🧳 [35]	
	"box"

Figure 3 - Category "alt.atheism" after tokenized

of words that have same original to same stem (this stem is not required to be root word or to be meaningful). For example, set of words: "learning", "learnt", "learned" should be stemmed to "learn" only. Purpose of stemming is to reduce the numbers of terms in our model so that performance will be enhanced. Figure 3 and figure 4 show the different between set of tokenized words and set of words after removing stop words and stemming. These words are extracted from the category "alt.atheism" in the training dataset.

Name	Value
stemmedTokens	Count = 7592
- 🔷 [0]	"freedom"
- 9 [1]	"religion"
- 🧳 [2]	"foundat"
- 🗳 [3]	"darwin"
- 🧳 [4]	"fish"
- 💊 [5]	"bumper"
- 🧳 [6]	"sticker"
- 🧳 [7]	"assort"
- 🔗 [8]	"atheist"
— 🧳 [9]	"paraphernalia"
🧼 🧳 [10]	"avail"
- 🧳 [11]	"write"
- 🧳 [12]	"ffrf"
- 🧳 [13]	"box"
- 🧳 [14]	"madison"
🧼 🧳 [15]	"wi"
🧼 🧳 [16]	"telephon"
— 🗳 [17]	"evolut"
- 🧳 [18]	"design"
— 🧳 [19]	"sell"
🧼 🧳 [20]	"symbol"
🧼 🗳 [21]	"on"
— 🗳 [22]	"christian"
- 🧳 [23]	"stick"
— 🗳 [24]	"car"
— 🗳 [25]	"feet"
— 🗳 [26]	"word"
— 🗳 [27]	"written"
- 🖉 [28]	"delux"
🧼 🧳 [29]	"mould"

Figure 4 - Category "alt.atheism" after stop words removal and stemming

In order to enhance more performance, the list of tokens/ words in the model can be reduced by either using threshold method or TF-IDF method. The former one is much easier than the later one. In the former one, what we need to do is just to specify an upper and a lower threshold value so that every word that appear more than upper threshold or less than lower threshold value will be removed. The recommend upper threshold should be 100 and lower threshold should be 10, in my opinion. The reason that makes threshold work is that unimportant words that not appear quite often or appear a lot in almost documents over the whole document collection should be removed.

TF-IDF method is more complicated but can help removing a lot of unimportant words with confident. In TF-IDF method, we define weight of term is (TF*IDF) where TF refers to Term Frequency and IDF refers to Inverse Document Frequency. Weight is a measure of how important a word is to a document in a collection. TF tells us how often the word appears in a document compare to other words. In the other hand, DF (document frequency) shows us how many documents in a collection contain the word. IDF is inverted of DF; this means the higher DF, the smaller IDF. Consequently, the higher TF is as well as the higher IDF is, the more important the word is. In other words, the higher weight of term (TF*IDF), the more important the term is. TF and IDF formula is given as following:

$$tf_{i,j} = \frac{n_{i,j}}{\Sigma_k n_{k,j}}$$

$$i df_i = \log \frac{|D|}{|\{d: t_i \in d\}|}$$

 $[\{a: t_i \in a\}]$ Where $n_{i,j}$ is count of word t_i in the document d_j . |D| is total number of documents in the collection. $|\{d: t_i \in d\}|$ is number of documents that contain word t_i . In order to avoid division by zero, $1 + |\{d: t_i \in d\}|$ should be used instead of $|\{d: t_i \in d\}|$.

Based on weight (TF*IDF), top 1000, 5000, 10000... words with top weight can be chosen for text classification model confidentially. The number of top weighted words is chosen depending on purpose of classification task whether correctness or speed is higher priority. The lower number of chosen words, the faster classification task will be.

After tokenizing, removing stop words, stemming and getting top most important words by applying TF-IDF weighting factor, it is time to calculate parameters for our model. Naïve Bayes is key algorithm for this task. Considering our model now contains following information:

- **D:** Set of documents
- N: number of documents in **D**
- V: Set of vocabulary/tokens/terms
- C: set of Categories

Besides of these parameters, in order to complete our model, we need 2 more parameters that are *prior* and *condprob. prior* and *conprob* are calculated by steps shown below. *prior* tells us how many documents in a category compared to other categories in the collection. *condprob* shows us how important a word compared to other words in specific category.

• Foreach category c in C $N_c = Number of documents in c$ $Prior = N_c/N$ $text_c = All text in category c$ foreach t in V $do T_{ct} = countTokens(t, text_c)$ foreach t in V $condprob[t, c] = \frac{Tct + 1}{\Sigma t'(Tct' + 1)}$

• **return** V,*prior*, *condprob*

Now, our text classification model is completed and can be applied to classification task. Let d is document to be classified and W is extracted tokens/words form (V,d). Result returned from below function is category of document d.

Foreach c in C
score[c] = log(prior[c])
foreach t in W
score[c]+= log(condprob[t,c])
return argmax_{c in C}(score[c])

Finally, a classifier has been completely implemented throughout this section. From training data, the classifier is able to build up a model and apply that model for classification task. Another quick note is this classifier using multi-nomial Naïve Bayes algorithm.

V. <u>Testing and results</u>

In this section, the classifier implemented in previous section will do training task and testing task over several datasets. All of the datasets contain following twenty categories:

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey
talk.politics.misc talk.politics.guns talk.politics.mideast	misc.forsale
talk.religion.misc alt.atheism soc.religion.christian	sci.crypt sci.electronics sci.med sci.space

The first dataset using for both training task and testing task contains 19997 articles. Without

TF-IDF, total 95432 terms were found from this dataset. After TF-IDF, total terms were reduced to 7681, 4780, 1343 terms with 89.62%, 88.82%, 88.29% correctness alternatively. Details about classification correctness of each category can be found in figure 5, 6, 7.

The second dataset is a little bit different from previous one. This dataset is revised version of original dataset (19997 documents). The documents are sorted by date and divided into training (60%) and test (40%) sets. Crossposts (duplicates) and newsgroup-identifying headers are removed. Training set is described as following:

Total documents	11314
alt.atheism	480
comp.graphics	584
comp.os.ms-windows.misc	591
comp.sys.ibm.pc.hardware	590
comp.sys.mac.hardware	578
comp.windows.x	593
misc.forsale	585
rec.autos	594
rec.motorcycles	598
rec.sport.baseball	597
rec.sport.hockey	600
sci.crypt	595
sci.electronics	591
sci.med	594
sci.space	593
soc.religion.christian	599
talk.politics.guns	546
talk.politics.mideast	564
talk.politics.misc	465
talk.religion.misc	377

Without TF-IDF, total 69604 terms were found from this dataset. After TF-IDF, total terms were reduced to 8291, 5017, 1380 terms with 78.44%, 77.28%, 72.69% correctness alternatively. Details can be found in figure 8, 9, 10.

Threshold method was also examined instead of TF-IDF in removing unimportant words. If lower threshold is equal to ten, no upper threshold is used, total terms remained will be 12881, and correctness is 74.49%. If upper threshold equal to 100 is added, 9860 terms will remain and the correctness achieved is 71.52%.

Test with	7681 terms								
category	alt.atheism	:	894 True	106	False	1000	Total	89.40 %	correct
category	comp.graphics	:	922 True	78	False	1000	Total	92.20 %	correct
category	comp.os.ms-windows.misc	۰.	122 True	878	False	1000	Total	12.20 %	correct
category	<pre>comp.sys.ibm.pc.hardware</pre>	:	951 True	49	False	1000	Total	95.10 %	correct
category	comp.sys.mac.hardware	:	978 True	22	False	1000	Total	97.80 %	correct
category	comp.windows.x	1	892 True	108	False	1000	Total	89.20 %	correct
category	misc.forsale	1	956 True	44	False	1000	Total	95.60 %	correct
category	rec.autos	с.	970 True	30	False	1000	Total	97.00 %	correct
category	rec.motorcycles	с.	984 True	16	False	1000	Total	98.40 %	correct
category	rec.sport.baseball	:	991 True	9	False	1000	Total	99.10 %	correct
category	rec.sport.hockey		988 True	12	False	1000	Total	98.80 %	correct
category	sci.crypt	:	983 True	17	False	1000	Total	98.30 %	correct
category	sci.electronics	τ.	965 True	35	False	1000	Total	96.50 %	correct
category	sci.med	τ.	971 True	29	False	1000	Total	97.10 %	correct
category	sci.space	τ.	970 True	30	False	1000	Total	97.00 %	correct
category	<pre>soc.religion.christian</pre>	с.	996 True	1	False		Total	99.90 %	correct
category	talk.politics.guns	:	958 True	42	False	1000	Total	95.80 %	correct
category	talk.politics.mideast		957 True		False		Total	95.70 %	correct
category	talk.politics.misc	τ.	810 True	190	False	1000	Total	81.00 %	correct
category	talk.religion.misc	1	664 True	336	False	1000	Total	66.40 %	correct
In total,	17922 True 2075 Fals	se	19997 in	Total	89.62	% corr	rect		

Figure 5 – Applying full twenty newsgroups dataset for both training and testing - 7681 terms used after TF-IDF

Test with	4780 terms									
category	alt.atheism	:	886 True	1	114	False	1000	Total	88.60 %	correct
category	comp.graphics	:	907 True	1	93	False	1000	Total	90.70 %	correct
category	comp.os.ms-windows.misc	:	80 True	1	920	False	1000	Total	8.00 %	correct
category	comp.sys.ibm.pc.hardware	:	946 True	1	54	False	1000	Total	94.60 %	correct
category	comp.sys.mac.hardware	:	973 True	1	27	False	1000	Total	97.30 %	<pre>correct</pre>
category	comp.windows.x	:	878 True	1	122	False	1000	Total	87.80 %	<pre>correct</pre>
category	misc.forsale	:	955 True	1	45	False	1000	Total	95.50 %	correct
category	rec.autos	:	964 True	1	36	False	1000	Total	96.40 %	correct
category	rec.motorcycles	:	984 True	1	16	False	1000	Total	98.40 %	correct
category	rec.sport.baseball	:	988 True	1	12	False	1000	Total	98.80 %	correct
category	rec.sport.hockey	:	989 True	1	11	False	1000	Total	98.90 %	correct
category	sci.crypt	:	981 True	1	19	False	1000	Total	98.10 %	; correct
category	sci.electronics	:	961 True	1	39	False	1000	Total	96.10 %	correct
category	sci.med	:	968 True	1	32	False	1000	Total	96.80 %	correct
category	sci.space	:	962 True	1	38	False	1000	Total	96.20 %	correct
category	<pre>soc.religion.christian</pre>	:	996 True	1	1	False	997	Total	99.90 %	correct
category	talk.politics.guns	:	960 True	1	40	False	1000	Total	96.00 %	correct
category	talk.politics.mideast	:	944 True	1	56	False	1000	Total	94.40 %	correct
category	talk.politics.misc	:	792 True	1	208	False	1000	Total	79.20 %	correct
category	talk.religion.misc	:	648 True	1	352	False	1000	Total	64.80 %	correct
In total,	17762 True 2235 Fals	e I	19997 in	То	tal	88.82	% cor	rect		

Figure 6 – Applying full twenty newsgroups dataset for both training and testing - 4780 terms used after TF-IDF

Test with	1343 terms											
category	alt.atheism	:	854	True	1	146	False	100	0 Total	1	85.40 %	& correct
category	comp.graphics	:	913	True	1	87	False	100	0 Total	1	91.30 %	& correct
category	comp.os.ms-windows.misc	:	66	True	1	934	False	100	0 Total	1	6.60 %	& correct
category	<pre>comp.sys.ibm.pc.hardware</pre>	:	940	True	1	60	False	100	0 Total	1	94.00	& correct
category	comp.sys.mac.hardware	:	968	True	1	32	False	100	0 Total	1	96.80 %	& correct
category	comp.windows.x	:	877	True	I.	123	False	100	0 Total	1	87.70 %	& correct
category	misc.forsale	:	965	True	1	35	False	100	0 Total	1	96.50 %	& correct
category	rec.autos	:	963	True	1	37	False	100	0 Total	1	96.30 %	& correct
category	rec.motorcycles	:	981	True	1	19	False	100	0 Total	1	98.10 %	& correct
category	rec.sport.baseball	:	989	True	L	11	False	100	0 Total	1	98.90 %	& correct
category	rec.sport.hockey	:	985	True	1	15	False	100	0 Total	1	98.50 %	& correct
category	sci.crypt	:	983	True	1	17	False	100	0 Total	1	98.30 \$	& correct
category	sci.electronics	:	956	True	1	44	False	100	0 Total	1	95.60	& correct
category	sci.med	:	980	True	1	20	False	100	0 Total	1	98.00 %	& correct
category	sci.space	:	959	True	1	41	False		0 Total			& correct
category	<pre>soc.religion.christian</pre>	:	996	True	1	1	False	99	7 Total	1	99.90	& correct
category	talk.politics.guns	:	940	True	1	60	False	100	0 Total	1	94.00	& correct
category	talk.politics.mideast	:	924	True	1	76	False	100	0 Total	1	92.40	& correct
category	talk.politics.misc	:	785	True	L.	215	False	100	0 Total	1	78.50 %	& correct
category	talk.religion.misc	:	631	True	1	369	False	100	0 Total	1	63.10	& correct
In total,	17655 True 2342 Fals	se	19	997 in	Т	otal	88.29	8 CC	rrect			

Hung Vo H.M

Test with	8291 terms												
category	alt.atheism	:	258	True	1	61	False	1	319	Total	1	80.88	& correct
category	comp.graphics	:	301	True	1	88	False	1	389	Total	1	77.38	& correct
category	comp.os.ms-windows.misc	:	1	True	1	393	False	1	394	Total	1	0.25	& correct
category	<pre>comp.sys.ibm.pc.hardware</pre>	:	282	True	1	110	False	1	392	Total	1	71.94	& correct
category	comp.sys.mac.hardware	:	330	True	T.	55	False	1	385	Total	1	85.71 %	& correct
category	comp.windows.x	:	283	True	1	112	False	1	395	Total	1	71.65	& correct
category	misc.forsale	:	317	True	T.	73	False	1	390	Total	1	81.28	& correct
category	rec.autos	:	355	True	1	41	False	1	396	Total	1	89.65	& correct
category	rec.motorcycles	:	372	True	1	26	False	1	398	Total	1	93.47	s correct
category	rec.sport.baseball	:	366	True	1	31	False	1	397	Total	1	92.19	& correct
category	rec.sport.hockey	:	376	True	1	23	False	1	399	Total	1	94.24	& correct
category	sci.crypt	:	354	True	1	42	False	1	396	Total	1	89.39	correct
category	sci.electronics	:	277	True	1	116	False	1	393	Total	1	70.48	& correct
category	sci.med	:	327	True	1	69	False	1	396	Total		82.58	& correct
category	sci.space	:	355	True	1	39	False	1	394	Total	1	90.10	& correct
category	<pre>soc.religion.christian</pre>	:	363	True	1	35	False	1	398	Total	1	91.21	& correct
category	talk.politics.guns	:	335	True	1	29	False	1	364	Total	1	92.03	& correct
category	talk.politics.mideast	:	314	True	1	62	False	1	376	Total	1	83.51	& correct
category	talk.politics.misc	:	188	True	T.	122	False	1	310	Total	1	60.65	& correct
category	talk.religion.misc	:	154	True	1	97	False	1	251	Total	1	61.35	& correct
In total,	5908 True 1624 Fals	se	7	532 in	Т	otal	78.4	4 %	cor	rect			

Figure 8- Applying revised twenty newsgroups dataset - 8291 terms after TF-IDF

Test with	5017 terms							
category	alt.atheism :	251	True	1	68	False	319 Total	78.68 % correct
category	comp.graphics :	300	True	1	89	False	389 Total	77.12 % correct
category	comp.os.ms-windows.misc :	1	True	1	393	False	394 Total	0.25 % correct
category	<pre>comp.sys.ibm.pc.hardware :</pre>	273	True	1	119	False	392 Total	69.64 % correct
category	comp.sys.mac.hardware :	329	True	1	56	False	385 Total	85.45 % correct
category	comp.windows.x :	274	True	1	121	False	395 Total	69.37 % correct
category	misc.forsale :	321	True	1	69	False	390 Total	82.31 % correct
category	rec.autos :	351	True	1	45	False	396 Total	88.64 % correct
category	rec.motorcycles :	369	True	1	29	False	398 Total	92.71 % correct
category	rec.sport.baseball :	366	True	1	31	False	397 Total	92.19 % correct
category	rec.sport.hockey :	371	True	1	28	False	399 Total	92.98 % correct
category	sci.crypt :	347	True	1	49	False	396 Total	87.63 % correct
category	sci.electronics :	266	True	1	127	False	393 Total	67.68 % correct
category	sci.med :	319	True	1	77	False	396 Total	80.56 % correct
category	sci.space :	352	True	1	42	False	394 Total	89.34 % correct
category	soc.religion.christian :	355	True	1	43	False	398 Total	89.20 % correct
category	talk.politics.guns :	331	True	1	33	False	364 Total	90.93 % correct
category	talk.politics.mideast :	308	True	1	68	False	376 Total	81.91 % correct
category	talk.politics.misc :	185	True	1	125	False	310 Total	59.68 % correct
category	<pre>talk.religion.misc :</pre>	152	True	1	99	False	251 Total	60.56 % correct
In total,	5821 True 1711 False	7	532 in	то	tal	77.28 %	correct	

Figure 9 - Applying revised twenty newsgroups dataset - 5017 terms after TF-IDF

Test with	1380 terms													
category	alt.atheism	:	213	True	L.	106	False	1	319	Total	1	66.77	8	correct
category	comp.graphics	:	308	True	L	81	False	1	389	Total	1	79.18	00	correct
category	comp.os.ms-windows.misc	:	1	True	L	393	False	1	394	Total	1	0.25	90	correct
category	comp.sys.ibm.pc.hardware	:	250	True	L	142	False	1	392	Total	1	63.78	olo	correct
category	comp.sys.mac.hardware	:	297	True	L.	88	False	1	385	Total	1	77.14	8	correct
category	comp.windows.x	:	262	True	L	133	False	1	395	Total	1	66.33	olo	correct
category	misc.forsale	٤.	306	True	I.	84	False	1	390	Total	1	78.46	olo	correct
category	rec.autos	ε.	344	True	L	52	False	1	396	Total	I.	86.87	00	correct
category	rec.motorcycles	:	366	True	L.	32	False	1	398	Total	1	91.96	00	correct
category	rec.sport.baseball	:	354	True	L	43	False	1	397	Total	1	89.17	olo	correct
category	rec.sport.hockey	:	370	True	I.	29	False	1	399	Total	1	92.73	8	correct
category	sci.crypt	:	340	True	L.	56	False	1	396	Total	1	85.86	8	correct
category	sci.electronics	٤.	230	True	I.	163	False	1	393	Total	1	58.52	90	correct
category	sci.med	:	284	True	L	112	False	1	396	Total	1	71.72	00	correct
category	sci.space	:	336	True	L	58	False	1	394	Total	1	85.28	00	correct
category	<pre>soc.religion.christian</pre>	:	340	True	I.	58	False	1	398	Total	1	85.43	00	correct
category	talk.politics.guns	:	312	True	I.	52	False	Ι	364	Total	1	85.71	olo	correct
category	talk.politics.mideast	:	278	True	I.	98	False	1	376	Total	1	73.94	olo	correct
category	talk.politics.misc	:	157	True	I.	153	False	1	310	Total	1	50.65	00	correct
category	talk.religion.misc	:	127	True	I.	124	False	1	251	Total	1	50.60	00	correct
In total,	5475 True 2057 Fals	e	75	532 in	T	otal	72.6	9 %	cor	rect				

Figure 10 - Applying revised twenty newsgroups dataset - 1380 terms after TF-IDF

VI. <u>Discussion:</u>

Naïve Bayes methods for text classification is simple to implement compared to other algorithms. It has low variance and high bias. Naïve Bayes categorization is a simple probabilistic categorization based on Conditional Independence between features. Naïve Bayes classifies an unknown instance by computing the category which maximizes the posterior.

In cooperating with TF-IDF weighting, Naïve Bayes classification performance is improved incredibly. Only with less than 1400 terms left out of nearly 100000 terms in full twenty newsgroup dataset or out of nearly 70000 terms in the revised dataset was enough to achieve high correctness. Compared to threshold method to drop unimportant terms, TF-IDF is more efficient and precise. Moreover, if the stop words list was not used, those stop words should also be removed after TF-IDF.

Using same dataset for both training and testing purpose can result in really high correctness (almost 90% correctness in overall). Some category such as "soc.religion.christian" can even reaches 99.90% correctness. If training dataset and testing data set are separated, the result is not as good as in previous case. However, over 77% is still reliable result.

Despite of very excellent performance on independent categories such as "soc.religion.christian", "misc.forsale"..., the "comp.os.ms-windows.misc" always gets worst performance. This proves that the assumption of Conditional Independence is violated by the real world data and Naïve Bayes has poor performance when the features are highly correlated, e.g. "comp.os.ms-windows.misc" is high correlated with "comp.windows.x" as well as other categories in "comp" parent category.

VII. <u>Conclusion</u>

Throughout this project, several text classification methods have been examined. A Naïve Bayes classifier in corporation with TF-IDF has been implemented and tested. High performance was shown by applying the twenty newsgroups dataset in several different ways. Despite of some strong points that Naïve Bayes and TF-IDF enhanced, there was still some weakness in classification high correlated dataset. These weaknesses should be overcome by other advanced classification methods. Future work of this project would be implementing more different classifier and comparing their performance as well as optimizing current classifier.

VIII. <u>References</u>

[1]. Tom M. Mitchell, "Machine Learning", McGraw Hill, 1997.

[2]. C. Apte, F. Damerau , and S. M. Weiss , "Automated Learning of Decision Rules for Text Categorization", ACM Transactions on Information Systems, 1994,

[3]. McCallum, A. and Nigam K. "A Comparison of Event Models for Naive Bayes Text Classification", AAAI/ICML-98 Workshop on Learning for Text Categorization, 1998

[4]. Aditya Chainulu Karamcheti, "a comparative study on text classification", MS thesis, University of Nevada, Las Vegas, 2010.

[5]. Twenty Newsgroups Dataset

http://people.csail.mit.edu/jrennie/20Newsgr oups/

[6]. Stop words list

http://www.lextek.com/manuals/onix/stopw ords1.html

[7]. Porter Stemmer Algorithm.

http://tartarus.org/~martin/PorterStemmer/

[8]. Term Frequency and Inverse Document Frequency – Wikipedia.

http://en.wikipedia.org/wiki/Term_frequenc y

[9]. Document classification –Wikipedia http://en.wikipedia.org/wiki/Document_clas sification

[10]. Naïve Bayes Text Classification. http://nlp.stanford.edu/IR-

book/html/htmledition/naive-bayes-textclassification-1.html